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1 Introduction 

Energy use by air conditioning (heating and cooling) equipment is often a significant fraction of total annual 
building energy use. Hence, it is also a significant contributor to energy operating costs and emissions. Before 
making changes to equipment, products, building design or regulations to address or take advantage of this, 
it is important to understand in more detail how air conditioners are actually used, so that these changes can 
be targeted to the right consumers to achieve the desired outcomes. 

Unless sub-circuit-metering is installed, it is difficult to determine the air-conditioner usage of individual 
households. Other options – such as plug-in meters, manually recording usage, or high-frequency, whole-of-
house metering coupled to device disaggregation methods – are expensive, unsuitable or impractical. Interval 
meters are becoming increasingly common and provide a relatively large amount of data compared with the 
data that has been available historically. Interval data is also likely to be available to the consumer, who may 
also choose to allow access to third parties. 

Three examples outlining the usefulness of access to interval data are outlined below. 

 Australia’s National Construction Code bases its building energy rating on certain assumptions of air-
conditioner usage patterns. These patterns directly affect the design of new buildings. Hence, it is 
important that they are informed by the most accurate data. The model developed here provides 
better information on how air conditioners are used in residential dwellings, as well as a technique for 
updating the models if new validation data is available. 

 The ability to predict air-conditioner usage – and in particular, peak demand events – is important for 
managing the electricity network. The model developed here provides an alternative approach to 
estimating aggregate energy usage when coupled to air-conditioner stock models and weather 
predictions. The output is therefore a natural complement to the aggregate air-conditioning 
estimation work of Mazdeh (1), with outputs from both pieces of work eventually enabling improved 
validation and data gap-filling. 

 Most consumers only become aware of their energy use when they receive their quarterly bill. This 
generally provides no information on which appliances are consuming the most energy or are the most 
expensive to operate. Having this information would allow consumers to make informed decisions 
about the appliances they buy or how often they use them. The model developed here is the first step 
towards providing this information. 

The aims of this work are to: 

 build a model for predicting individual dwelling air-conditioner operation (on/off status at 30-minute 
intervals) using only whole-of-house, 30-minute interval meter data and the dwelling location 

 assess the accuracy of the model using a test dataset that includes ground-truth information 

 use the model to predict air-conditioner usage for at least one other dataset and compare the 
resultant usage statistics with overall air-conditioner use statistics. 

Our model has two main limitations. First, it predicts air-conditioner on/off status, not power or energy 
consumption. Hence, it can only estimate the hours of operation and when this operation occurs. The model 
is therefore independent of appliance efficiency, and can be coupled with different appliance stock models to 
predict energy use. However, by itself, the current model cannot provide an estimate of total air-conditioner 
energy use and cost. Simple methods, such as asking consumers the capacity of their appliance or calibrating 
the model at a time of known usage, may be used to resolve this. The second limitation is that the model is 
developed using data from the Residential Building Energy Efficiency study for 143 dwellings. Hence, its 
generality and representativeness is tied to that of the underlying study. 



 

2 Model development and results 

2.1 Development of individual dwelling models 

2.1.1 Formulation 

The available data from which to build a prediction model consists of historical total household energy 
consumption values at 30-minute intervals, the value at the current interval, the timestamp of that 
measurement (i.e. date and time), and the approximate location (i.e. postcode) of the dwelling. Using the 
timestamp and location, local weather data (temperature, humidity, wind speed and cloudiness) from the 
nearest Bureau of Meteorology ground measurement station was linked to the model. Irradiance data is 
generally not available in real time, but can be obtained several months later from satellite-derived estimates. 

There are many ways of combining these variables in a prediction model. The approach taken here was to 
base the model on two secondary predictor variables, labelled ்ܮ and ܮா . 

 is an absolute measure of the deviation of the ambient temperature from a reference level considered to ்ܮ
be comfortable. If ܶ is the ambient temperature over a given half-hour interval, തܶ|௛,௣ is the average ambient 
temperature for that hour of the day over the past period of days, p, and ௡ܶ|௛ is the reference neutral 
temperature for that hour of the day, then ்ܮ is defined by: 

்ܮ =
൫ܶ − തܶ|௛,௣൯ + (ܶ − ௡ܶ|௛)

2
 

Here a period p of days equal to 14 was used and the neutral temperature was defined as ௡ܶ|௛ = 20 +
3 sin((ℎ − 7) ⁄ߨ12  is notionally positive for conditions where cooling might be required and negative for ்ܮ .(
conditions where heating might be required. The magnitude of ்ܮ is greater if the average ambient 
temperature over the past period is further from the current temperature than the neutral temperature. In 
effect, this acts like an inertia on the measured ‘discomfort’, making it less for days that would otherwise be 
more uncomfortable than the recent trend, and greater for days that would otherwise be less uncomfortable 
than the recent trend. This is summarised in Figure 1 for two of the six possible cases. 

 

Figure 1 Left: Example with temperature hotter than average over past fortnight, but past fortnight average hotter 
than comfort neutral; the effective comfort ∆ࢀ decreases. Right: Example with cooler than average temperature over 
past fortnight and cooler than comfort neutral; the average is more than comfort neutral, and the effective comfort 
 .increases ࢀ∆

ாܮ  is a relative measure of the total energy consumption compared with the energy consumption on a mild 
day where air-conditioner usage is considered unlikely. If ܧ is the total energy consumption over a given half-
hour interval and ܧത|௛,௠ is the average energy consumption for that hour of the day over all mild days m, then 
ாܮ  is defined by: 

ாܮ = ቤ
ܧ

ത|௛,௠ܧ
ቤ 



 

Here mild days are defined as days where max (ܶ) ≤ 26 ℃ and min (ܶ) ≥ 14 ℃. 

For each dwelling, we seek to construct a classification model that can predict the air-conditioner on/off status 
at any 30-minute interval given the two predictor values ܮா   and ்ܮ. A Gaussian process classification (GPC) 
approach was chosen, because it is flexible in that it does not require a predetermined function to be assumed 
for the relationship between the predictor variables and the response variable. It also provides a probabilistic 
prediction. In a GPC model, constraints are placed on the interaction between the predictor variables (i.e. the 
covariance function) and on the distribution of possible functions that relate the predictors to the response 
variable. The distribution of possible functions must be Gaussian. 

Key parameters are the choice of covariance function, the likelihood function and the inference method. Here 
we used the squared exponential covariance function with automatic relevance determination combined with 
a constant mean function. The squared exponential function is appropriate for a wide range of problems 
where there is no specific pre-determined pattern expected, such as a period trend or linear increase. The 
covariance function is given by: 

݇൫ݔ௜ ൯ߠ௝หݔ, = ݌ݔ௙ଶ݁ߪ ൥−
1
2
෍
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To estimate the probability of air-conditioner use, we used the cumulative Gaussian (i.e. the error function) as 
the likelihood function. The Laplace approximation method was used to calculate the posterior for the 
Gaussian process and evaluate the negative marginal log likelihood of the model (i.e. the goodness of fit). 

2.1.2 Model training and testing 

Approximately two years of 30-minute interval data was available for 143 dwellings from the Residential 
Building Energy Efficiency (RBEE) dataset. This data includes both the total household energy consumption 
values and the air-conditioner sub-circuit energy consumption for validation of the models. Dwellings were 
located in the greater Brisbane, Melbourne and Adelaide regions. The total household energy consumption 
excluded any solar generation or onsite usage. The air-conditioner sub-circuit energy consumption included 
usage of all air conditioners ‘hard wired’ to the main circuit board. It did not include any heating or cooling 
appliances that might have been connected to wall outlets. 

The approach taken is summarised below. 

1. The nearest weather station to each postcode was identified and weather data matched to the 
interval meter data according to the metering data timestamps. 

2. Intervals missing temperature or energy data were removed. In addition, energy values greater than 
the 99.9th percentile were removed and energy values less than zero were set to zero. Air-conditioner 
energy-use values greater than the total household energy-use value were set to the total household 
energy-use value. 

3. The ground-truth air-conditioner on/off status was determined as follows: for air-conditioner energy 
use >200 Wh in a 30-minute interval, the air conditioner was considered to be on. 

4. For each dwelling, the data was divided randomly into two equal-sized sets: a training set (50%) and 
a testing set (50%). The training sets were used to fit the models and the testing set was used to test 
the accuracy of the models. 

5. Data to fit the models was randomly selected from the training dataset such that at least 400 ‘on’ and 
400 ‘off’ intervals were selected, subject to the constraint that no more than 2000 of either interval 
was selected. 

6. For each model, the three hyper-parameters (ߪଵ,ߪଶ,ߪ௙) were optimised to find the best model. 



 

7. The model performance was then evaluated on the entire testing set (approximately one year of 
data). 

The resultant models are summarised in Figure 2 for 6 representative dwellings. Numbers above each figure 
indicate the dwelling identification number. These plots show ground-truth air conditioner on (red circles) and 
air conditioner off (blue circles) status at 30-minute intervals as a function of ܮா  and ்ܮ for the equivalent of 
approximately one year of testing data. Contour lines show the classification model-predicted probability of 
the air conditioner being on in 10% probability increments based on the training data. The highlighted 
turquoise contour is the 50% contour, which can be used to distinguish on/off. (Note that any contour could 
be chosen depending on the desire to minimise either false positives or false negatives.) 

The behaviour for dwelling 3 (represented in the top-left figure) is consistent with occasional, cooling-only 
usage of what is likely to be a medium size air conditioner (as evidenced by the moderate relative increase in 
total household power consumption when air conditioning is in use) at times of moderate-to-high discomfort 
(i.e. ்ܮ > 10). 

For dwelling 5 (top-right figure), air conditioning is used for both heating and cooling (usage values 
corresponding to both negative and positive values of ்ܮ). A relatively clear separation exists between the two 
regions at approximately ்ܮ = 5, with heating usage being more frequent. Dwellings 86, 108, 134 and 137 
also show an apparent separation between cooling and heating behaviour, though with different 
characteristics. 

Dwelling 86 has relatively high energy-use values occurring at mild conditions and not associated with the 
metered air-conditioning sub-circuit. The magnitude of these values is similar to the magnitude when air 
conditioning is in use. Two possibilities are: the air conditioner is quite small and has minimal influence on the 
usage values, or alternatively, another device is in use during mild conditions when the air conditioner is not 
in use. 

Dwelling 108 is likely to have a large capacity air conditioner, given the very high values of ܮா  when air 
conditioning is in use and the clear separation between in-use and not-in-use states. Usage is frequent when 
 deviates from a small zone around 5. On the other hand, the data for dwelling 134 suggests much more ்ܮ
infrequent usage of a small-capacity air conditioner, only for relatively extreme conditions. The smaller 
capacity makes distinguishing ‘on’ states more difficult, but the fact that usage is confined to more extreme 
values of ்ܮ alleviates this somewhat. 

Finally, dwelling 137 displays an interesting behaviour. There is a distinct zone of relatively high values of ܮா  
for cold conditions that is not associated with usage of the metered air-conditioner sub-circuit. Meanwhile, 
the heating air-conditioning usage for similar conditions is distinct and corresponds to lower values of ܮா . 
Possible explanations may be use or increased consumption by another appliance on cold days (e.g. a hot 
water booster switched on over a specific period of cold weather), or another heating appliance that is not 
measured by the metered air-conditioner sub-circuit (e.g. an electric bar heater). 

The overall prediction accuracy on the test data for all of the dwellings is summarised in Figure 3. This plot 
shows the actual total hours of air-conditioner usage versus the model-predicted hours of use. The R-squared 
value of a linear fit through the data is 0.97, indicating a good fit of the individual dwelling models to the data. 
Note that the models were fit to separate training datasets. 

 

 

 

 



 

 

  

 

Figure 2 Test dataset showing example air-conditioner usage behaviours for four different dwellings. Red symbols 
indicate 30-minute intervals with air-conditioner usage; blue intervals without usage. Symbols represent the test 
dataset. Top left: dwelling with occasional usage for more extreme conditions. Top right: dwelling with frequent use, 
almost independent of ambient conditions. Bottom left: dwelling with rare usage of a large air conditioner only for 
more extreme conditions. Bottom right: dwelling with consistent usage for moderate to extreme conditions. Contours 
show estimated usage probability based on Gaussian process classification model fitted to training dataset. Highlighted 
contour is the 80% probability of use 

 



 

 

Figure 3 Comparison of estimated and actual total hours of air-conditioner usage on the test dataset for the individual 
models of dwelling air-conditioner usage 

2.2 Clustering to create representative models 

2.2.1 Approach 

The purpose of clustering is to reduce the 143 individual dwelling models into a small subset of representative 
models that can be used to estimate the performance of the dwellings. This then allows any dwelling to be 
modelled, provided that a method is available for deciding to which cluster the dwelling belongs (see Section 
2.3). The clustering approach used here and results are described below. 

1. The ܮா -்ܮ space was divided up into a grid of points. Here we used a truncated portion of the 
space 0 ≤ ாܮ ≤ 8, 0 ≤ ்ܮ ≤ 20 to focus the clustering on the region where most of the data lies. 
The spacing chosen was 10x10, leading to 100 points. (Note that the method is insensitive to 
increasing the number of points.) 

2. The minimum distance from each grid point to the model contour line corresponding to the 
desired delineation between on/off was calculated. Here the 0.5 contour line was used. 

3. A principle component decomposition was performed to reduce the 100 parameter dimensions 
to a more manageable number: in this case, three. A plot of the regions contributing most 
significantly to the three components is shown in Figure 4. 

Dimension 1 -> negative ்ܮ  (40% of variance) 

Dimension 2 -> positive ்ܮ  (38% of variance) 

Dimension 3 -> high L_E (8% of variance) 

4. A Gaussian Mixture model clustering based on maximum likelihood estimation was used to group 
the dwelling models based on the three principle components. Here we used a diagonal 
covariance matrix (sense principle components should be independent) but unshared covariance 
matrices. Since the number of clusters must be input to the method, this number was varied, and 
Bayes information criteria (BIC) was used to choose the optimum number of clusters. Clustering 
was repeated 50 times for each assumed number of clusters to ensure a smooth trend.  

The variation of BIC with number of clusters is shown in the right plot of Figure 4. The lower the 
value of BIC, the better (more distinct) the clustering. Based on this, four clusters were chosen. 
Plots of the three principle components for each dwelling are shown in Figure 5. Symbols indicate 



 

the assigned cluster for each dwelling. Cluster 4 is distinct and corresponds to dwellings with the 
metered air-conditioning device used for heating only. There are only two dwellings in this 
cluster. Clusters 2 and 3 are also distinct, with a relatively tight grouping. These correspond to 
both heating and cooling usage. Cluster 1 is spread out and less distinct and corresponds to 
mostly only cooling use of the air-conditioning device. 

5. A model was created for each of the four clusters to represent all dwellings in the cluster. The 
approach taken was to fit a new Gaussian classification model using randomly sampled data 
points from the training datasets for all of the dwellings in the given cluster. To reduce the 
computational time, 2000 data points in total were selected to build the model for a given cluster, 
again ensuring that no more than 400 ‘on’ data points. 

The resultant four models are summarised in Figure 6. Here, the contours show the air-conditioning usage 
probability based on a subsample of the training datasets, and the data points show the actual on/off binary 
air-conditioner use values: in this case, also for the subsample of the training dataset. 

 

Figure 4 Left: diagram showing regions contributing most significantly to the three principle components used to 
distinguish different air-conditioner usage model types. Right: plot of Bayes information criteria as a function of the 
number of different clusters assumed; a lower number indicates a better overall representation of the data 

 

Figure 5 Plots showing grouping of individual dwelling models into four clusters based on the three principle 
components 

 



 

 

Figure 6 Contours showing air-conditioner use prediction probabilities in 10% increments for the four cluster models. 
Symbols indicate on (red) and off (blue) ground-truth values for the training data subset 

2.2.2 Predictions based on cluster models 

In the next step, the above four cluster models were used to predict the air-conditioner use of all 143 dwellings 
for the test data sets. The resultant actual and predicted hours of air-conditioner use are compared in Figure 
7. Symbols indicate the assigned cluster for each dwelling. This plot can be directly compared with Figure 3, 
which shows the same prediction using the 143 individual models. The R-squared value of the fitted line below 
is 0.84. 



 

 

Figure 7 Comparison of estimated and actual total hours of air-conditioner usage on the test dataset using one of the 
four cluster models to model each dwelling’s air-conditioner usage 

The models also provide the air-conditioner use status at specific 30-minute intervals. Figure 8 compares the 
actual recorded 30-minute air-conditioner sub-circuit energy consumption for one dwelling with the predicted 
air-conditioner use probability using the model developed for the cluster (in this case, Cluster 1). Red and 
green symbols indicate incorrect and correct predictions, respectively, based on the 50% probability threshold. 
For many air-conditioner usage intervals over summer, the prediction is reasonably accurate. Incorrect ‘on’ 
predictions are generally more frequent than incorrect ‘off’ predictions, and many of the incorrect ‘on’ 
predictions occur just before or just after correct ‘on’ predictions. 

 

Figure 8 Comparison of air-conditioner sub-circuit energy use (blue lines) for dwelling 19 with prediction made using 
the model for Cluster 1 using the test dataset. Left: entire date range, right: close up of a selected period 

2.3 Model for assigning dwellings to clusters 

The final stage of model development involved developing a method for assigning dwellings to one of the four 
clusters. A large number of variables relating to the dwelling and occupant-reported behaviours were available 
from the RBEE surveys.  
First-order predictors can be considered those that (may) directly relate to the occupant decision to use air 
conditioning at a particle point in time. For example, the indoor temperature and whether or not occupants 
are at home. Second-order predictors relate directly to the upper limit of the energy used when in use, for 
example the size of the conditioned space and the cooling/heating capacity of the air-conditioner. The 



 

magnitude of this upper-limit has an effect on the ability of the models to identify air-conditioner energy usage 
from the total energy consumption of the dwelling, with higher-consumption devices much more easy to 
distinguish. Third-order parameters influence the actual energy use at a particular time and may include 
parameters such as the efficiency/age of the appliance or the effectiveness of the building insulation. Most of 
the parameters included were second or third-order parameters. These included: 

 heating, cooling and hot water system type 

 annual electricity and gas spend in ranges 

 climate zone 

 dwelling theoretical star rating, level of insulation and estimated total heating, ventilation and air 
conditioning load 

 conditioned floor area 

 number of occupants (adults and children) and typical occupancy pattern 

 occupant-reported typical appliance use frequency in simple categories (dishwasher, washing 
machine, clothes dryer, cooler, heater), and average winter and summer temperatures in the dwelling 

 instances where occupants try to limit their energy use, use fans instead of air conditioning, shut blinds 
in summer to reduce heat load, choose an air-conditioning set-point that reduces energy use, or 
purchase green power. 

The following parameters derived directly from the energy-use profile were also considered: 

 average dwelling energy use 

 25th and 75th percentiles of dwelling energy use 

 polynomial coefficients for daily energy-use variation with maximum temperature of the day 

 density of points in different regions of the ܮா  .space ்ܮ- 

Unfortunately, none of the above variables could be used to reliably assign dwellings to one of the four clusters 
and incorrectly assigning a dwelling to a cluster generally resulted in large prediction errors. The most useful 
variables were the reported frequency of air-conditioner use and the distribution of points in the ܮா  .space ்ܮ- 
However, the resultant model was only able to assign dwellings to one of the five (four plus an additional no 
air-conditioner use cluster) with an accuracy of approximately 50%. There are a number of possible reasons 
for this. 

Although it may appear that there are many predictors from which to build a model, many of the survey 
parameters are not closely associated with air-conditioner energy use, let alone the action of using air 
conditioning at all. A number of the survey-recorded parameters are only ternary predictors at best, while 
some, such as usage frequency of non-air-conditioning appliances, or the purchasing of green power, simply 
were not useful predictors of behaviour for this dataset. 

Some variables that may be expected to be useful predictors were not found to be such, or were found to be 
less useful than expected. The type of heating/cooling system, or whether a heating or cooling system was 
present and if gas heating was used, were not clear predictors. The direct reported frequency of air-
conditioner use was less useful than expected. There a several likely reasons for this, as explained below. 

First, the presence of a cooling/heating system is only a necessary condition for its use, not a guaranteed 
indicator of use. For example, in the case of reverse-cycle systems, occupants may use only the cooling or only 
the heating function. Secondly, use of other plug-in electric appliances can make an energy-use profile with 
no sub-circuit metered air-conditioner appear the same as an energy-use profile with a sub-metered air-
conditioner heater. Following on, if the survey respondents in both dwellings report frequent heating use, 
then this measure’s usefulness as an overall predictor is reduced. For heating the presence of gas heaters that 
usually contribute very little to electricity use but can factor into occupant responses around heater usage in 



 

general further complicates the analysis.  Finally the presence of other temperature-dependent loads: most 
notably in winter with water heating, but also in summer due to fridges and freezes is an added complexity. 
Particularly for dwellings with a smaller capacity air conditioner, these loads may appear to some extent like 
a heating or cooling device, which can disrupt (i.e. confuse) the model for assigning dwellings to clusters. 

In the absence of additional information to distinguish different dwelling behaviours, one option to improve 
the accuracy of the model for assigning dwellings to clusters is to simply reduce the number of clusters. The 
models for clusters 2 and 3 are similar. Combining these two clusters reduces the overall R-squared value 
across all 143 dwellings by only a small amount to 0.8, compared with 0.84 with the model with four clusters. 
This increases the accuracy of the model for assigning dwellings to clusters to approximately 70%. However, 
this is still lower than desirable. Hence, in the next section we investigate an alternative approach to model 
development that clusters dwellings prior to model development. 

2.4 Alternative approach: clustering prior to model fitting 

The approach described above involved developing individual models of each dwelling, clustering dwellings 
with similar models, creating a representative model for each cluster, and then building a model that assigns 
new dwellings to a cluster without any air-conditioner usage information. The advantage of this approach is 
that it ensures dwellings with similar air-conditioner behaviour are grouped together. In addition, it can also 
be used to develop very accurate prediction models for individual dwellings, provided some ground-truth data 
is available to train the model for that dwelling. The disadvantage is that the final step of assigning new 
dwellings to a particular cluster is not always easy, or requires additional information from the dwelling, as 
was apparent in Section 2.3. 

An alternative approach is to perform clustering up front using information that does not include the air-
conditioner usage behaviour, and then construct an air-conditioner usage model for each cluster. The 
advantage of this approach is the process of assigning new dwellings to a particular cluster is simpler. However, 
it relies on the upfront clustering working correctly to group dwellings with similar air-conditioner usage 
behaviours. 

The approach taken is summarised below. 

1. Steps 1-5 in Section 2.1.2 were completed to create the datasets. 

2. The ܮா -்ܮ space was divided into six fixed, predefined regions. For each dwelling, the fraction of 
points in the training data set that fell into each region was determined. Note that no information on 
whether the points were air-conditioning on or off was used in this step. 

3. Gaussian mixture model clustering was used to group dwellings with similar values of the above 
fractions. Once again, BIC were used to select the optimal number of clusters, which was found to be 
five. Four of these clusters (2, 3, 4 and 5) were found to be reasonably distinct, as shown in the 
silhouette plot in Figure 9 (left). (Note that high positive silhouette values indicate that a particular 
dwelling is uniquely associated with that cluster. Negative values indicate that the dwelling could have 
been assigned to a different cluster.) The number of dwellings assigned to each of the five clusters is 
shown in Figure 9 (right). 

4. For each cluster, randomly sampled data points from the training data subsets (those created in Step 
5 of Section 2.1.2) were combined from all dwellings in that cluster. To reduce computing time, 2000 
data points in total were selected for each cluster. The GPC method was then used to build the model 
for each cluster with optimised values of the three hyper-parameters (ߪଵ,ߪଶ,ߪ௙). The resultant five 
models are summarised in Figure 10. Once again, contours show the air-conditioner usage probability 
based on the subsample of the training datasets. In these figures, data points have been omitted, 
because there is a generally a greater overlap of ‘on’ points in ‘off’ regions and vice versa, making it 
more difficult to see the contour lines. 



 

5. The cluster models developed using the training datasets were used to predict the air-conditioner 
on/off behaviour for each dwelling for the test datasets. 

 

 

Figure 9 Left; Silhouette plot showing how well the dwellings are grouped into clusters. Positive values indicate 
dwellings that strongly associated with only one cluster. Negative values indicate dwellings that could have been 
assigned to a different cluster. Right: Count of the number of dwellings assigned to each cluster 

 

Figure 10 Contours showing air-conditioner use prediction probabilities in 10% increments for the five cluster models 
constructed using the alternative approach 

2.4.1 Predictions based on cluster models 

Figure 11 (left) compares the resultant estimated hours of air-conditioner use with the actual values for the 
143 households as predicted using the above five cluster models. Different symbols indicate the cluster to 
which the dwelling belongs. The R-squared value of the straight line fit through the data is 0.68. This is lower 
than the value obtained in Section 2.3 using the first method (0.84), which indicates a less accurate fit. In 
general, dwellings with high/low air-conditioner usage are identified as such. The predictions for Cluster 3 
appear to have the most scatter, with a small number of dwellings estimated to have much higher numbers 
of operation hours than in the actual data set. However, as discussed in Section 2.3, one explanation is that 
these dwellings have significant energy use in cooling and/or heating due to plug-load appliances. 



 

Unfortunately, the data is not available to confirm this.  Figure 11 (right) shows box-whisker plots of the 
estimated number of hours of use for the dwellings in each of the clusters. 

 

Figure 11 Left: Comparison of estimated and actual total hours of air-conditioner usage on the test dataset using one 
of the five cluster models to model each dwelling’s air-conditioner usage 

 



 

3 Predictions for other datasets: CSIRO Victorian 
pilot dataset 

Although the analysis described above used separate sets of data for model development and model testing, 
both were derived from the RBEE study. Validation of the models with a totally different data set is highly 
desirable. Unfortunately, there are very few interval meter datasets with the necessary air-conditioner use 
ground-truth data (e.g. a sub-metered air-conditioner circuit) to achieve this. 

The CSIRO Victorian pilot survey dataset does not include a separate metered air-conditioner sub-circuit, but 
it does have respondent-reported number of hours of air-conditioner usage on a specific (known) date. Using 
this information combined with the overall dwelling consumption interval meter data and linked weather data, 
we can compare the model-predicted number of hours of air-conditioner usage on the specific date with the 
respondent-reported hours of usage. 

Data from 125 dwellings across Victoria was available. This consisted of interval meter data for one year 
between October 2016 and November 2017. Respondents reported their hours of air-conditioner usage on 
the day immediately prior to the date upon which they completed the survey. For most respondents, this was 
between January and March 2017, though some responses were also obtained in May and July 2017. The 
alternative model (described in Section 2.4) was used to make air-conditioner usage predictions. Dwellings 
were first assigned to one of the five clusters based on the Gaussian mixture model clustering using one year 
of data plotted in the ܮா -்ܮ space. The number of dwellings assigned to each cluster is shown in Figure 12 
(left). The corresponding cluster model was then used to predict the air-conditioner usage over a year for that 
dwelling. A boxplot showing the predicted annual usage for dwellings in each cluster is shown in the right plot 
of Figure 12. 

The predicted usage on the date corresponding to when occupants reported their usage is compared with the 
respondent-reported usage in Figure 13. Respondents reported usage as one of eight categories; here, the 
categories corresponding to occupants reporting not being at home and not knowing their usage were 
combined into the ‘no reported usage’ category. 

The results show there is generally a good agreement between the predicted usage and the respondent-
reported usage; note, however, that the categories of reported usage are broad. This gives some level of 
confidence that the model gives reasonable predictions on an independent data set. For the 6–12 hour 
category, the prediction is less than the reported, although there are only five or fewer dwellings in each of 
the four most frequent use categories. Preferably, more data points would be available to perform this 
analysis. 

As a final point, it is expected that the actual hours of usage, as characterised by the sum of 30-minute interval 
energy being above a threshold, would be equal to or less than the reported hours of usage. This is because 
once the air conditioner has been switched on for a period of time and the building has reached comfort 
conditions, it is possible that under mild conditions, the air conditioner may use minimal or no energy for some 
30-minute intervals (e.g. if air conditioning is left ‘on’ overnight and the outside temperature becomes close 
to the set-point). This is more likely to occur as the length of time in which air-conditioning is reported as ‘in 
use’ increases. 

 

 



 

 

Figure 12 Left: estimated number of dwellings in each air-conditioner usage model cluster for Victoria Pilot dataset. 
Right: boxplot showing estimated hours of air-conditioner usage by cluster 

 

 

Figure 13 Comparison of model estimated hours of air-conditioner usage with respondent-reported hours of usage 
on the specific date corresponding to when respondents reported usage 

 

 

 



 

4 Summary and next steps 

The air-conditioner usage models developed here may be used in their current form to make real-time or 
historical predictions of individual dwelling air-conditioner usage at half-hour intervals given interval meter 
data and the location of the dwelling. However, further refinement of the model could improve the accuracy 
of the prediction and provide more insight into typical usage behaviours. In particular, the following issues are 
suggested for consideration. 

 The method described in Section 2.4 to cluster dwellings in the ܮா  space was relatively simple and ்ܮ- 
used the density of points in pre-defined regions of the space. Alternative methods for clustering 
dwellings in the ܮா  space that achieve a more distinct separation of air-conditioner usage ்ܮ- 
behaviours could be investigated. 

 The ‘neutral temperature’ profile and the averaging period ‘p’ over which the moving average ambient 
temperature was calculated were defined based on experience. The dwelling models indicate that the 
separation between cooling and heating behaviours tends to be centred on small, positive values of 
 suggesting that the mean neutral temperature may be slightly too low. Alternative neutral ,்ܮ
temperature profiles and values should be investigated. In addition, the ambient temperature 
measure could be replaced by the apparent ambient temperature measure, which includes a humidity 
component that makes it more appropriate to comfort-based calculations. 

 The air-conditioner usage ground truth in the RBEE dataset does not include heating/cooling devices 
that might be connected to GPOs. This is likely to be one of the most significant factors complicating 
model development. The models developed may also underestimate heating and cooling usage 
because of this. For training on/off prediction models, the air-conditioner energy-use values are not 
actually required: only the binary on/off status is required. Hence, it may be feasible to gather new 
ground-truth data on heating and cooling device on/off status (for example from surveys) from which 
to further train the models. Alternatively, other sources of this information could be investigated, such 
as more frequent data on respondent-reported hours of air-conditioning use. 
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